
Week 11 - Wednesday



 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Networking









 What if you want to hold a lot of int values, or String
values, or Wombat values?

 You make an array!
 But arrays have a fixed size

 What if you don't know how long to make it?
 You have to overestimate how many values you need
 Or you have to periodically resize your array



 Another approach is using a dynamic data structure
 A dynamic data structure grows as you need space
 Python has lists (and sets and dictionaries) built in
 But Java depends on libraries
 Before we do libraries, let's implement a linked list ourselves 

to see what a pain it is
 Making data structures that work efficiently in different 

circumstances is the heart of COMP 2100





 A linked list is one of the simplest kinds of dynamic data 
structures

 You can imagine a linked list as a train
 Each node in the linked list has some cargo, and it can point at 

the next item in the list
 The last item points at null so that you know that the train has 

ended
 You can add and remove nodes as much as you want, and 

nothing needs to be resized



 The most common library implementation of a linked list is a 
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move 

forwards or backwards in the list
Xhead

23 47 58

X tail



 Let's try a simple definition for a doubly linked list that holds an unlimited 
number of String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}



 Inside the LinkedList class, we have to write methods to 
manipulate it

 There will be simple accessor methods like size() that 
return the size

 There will be simple mutator methods like clear() that 
remove all the elements from the list

 But the hard work will be methods to get, add, remove, and 
find elements



 If we always keep the size member correctly updated, the size()
accessor has a straightforward implementation

 Likewise, clearing the list returns it to its state right after construction

public int size() {
return size;

}

public void clear() {
head = null;
tail = null;
size = 0;

}



 Method signature:

 The method creates a new node
 If the list is empty, it points head at the new node
 Otherwise, it points the tail node's next at the new node 

and the new node's previous at the tail node
 It updates the tail to point at the new node
 It increases size by one

public void add(String value)



 Method signature:

 If index is illegal, throw an 
IndexOutOfBoundsException

 Loop through the list until reaching the node at location 
index (using 0-based indexing, because we are computer 
scientists!)

 Return the data of the node in question

public String get(int index)



 Method signature:

 If the list is empty, throw a NoSuchElementException
 Point a temporary variable at the head node
 Point head at the next node
 If the next node is null, point tail at null
 Otherwise, point the next node's previous at null
 Return the data of the temporary node

public String remove()



 Method signature:

 Loop through the list until reaching a node whose data is 
equal to value, keeping a counter of the current index

 If value is found, return the index
 If value is never found, return -1

public int indexOf(String value)





 Generics



 Finish Project 3
 Due Friday by midnight!

 Read Chapter 18


	COMP 2000
	Last time
	Questions?
	Project 3
	Dynamic Data Structures
	Storing a bunch of stuff
	Dynamic data structures
	Linked Lists
	Linked list
	Doubly linked list
	Definition
	Linked list methods
	Easy methods
	Add to the end of the list
	Get an element from the list
	Remove the first element
	Find the index of an element
	Upcoming
	Next time…
	Reminders

