
Week 11 - Wednesday



 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Networking









 What if you want to hold a lot of int values, or String
values, or Wombat values?

 You make an array!
 But arrays have a fixed size

 What if you don't know how long to make it?
 You have to overestimate how many values you need
 Or you have to periodically resize your array



 Another approach is using a dynamic data structure
 A dynamic data structure grows as you need space
 Python has lists (and sets and dictionaries) built in
 But Java depends on libraries
 Before we do libraries, let's implement a linked list ourselves 

to see what a pain it is
 Making data structures that work efficiently in different 

circumstances is the heart of COMP 2100





 A linked list is one of the simplest kinds of dynamic data 
structures

 You can imagine a linked list as a train
 Each node in the linked list has some cargo, and it can point at 

the next item in the list
 The last item points at null so that you know that the train has 

ended
 You can add and remove nodes as much as you want, and 

nothing needs to be resized



 The most common library implementation of a linked list is a 
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move 

forwards or backwards in the list
Xhead

23 47 58

X tail



 Let's try a simple definition for a doubly linked list that holds an unlimited 
number of String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}



 Inside the LinkedList class, we have to write methods to 
manipulate it

 There will be simple accessor methods like size() that 
return the size

 There will be simple mutator methods like clear() that 
remove all the elements from the list

 But the hard work will be methods to get, add, remove, and 
find elements



 If we always keep the size member correctly updated, the size()
accessor has a straightforward implementation

 Likewise, clearing the list returns it to its state right after construction

public int size() {
return size;

}

public void clear() {
head = null;
tail = null;
size = 0;

}



 Method signature:

 The method creates a new node
 If the list is empty, it points head at the new node
 Otherwise, it points the tail node's next at the new node 

and the new node's previous at the tail node
 It updates the tail to point at the new node
 It increases size by one

public void add(String value)



 Method signature:

 If index is illegal, throw an 
IndexOutOfBoundsException

 Loop through the list until reaching the node at location 
index (using 0-based indexing, because we are computer 
scientists!)

 Return the data of the node in question

public String get(int index)



 Method signature:

 If the list is empty, throw a NoSuchElementException
 Point a temporary variable at the head node
 Point head at the next node
 If the next node is null, point tail at null
 Otherwise, point the next node's previous at null
 Return the data of the temporary node

public String remove()



 Method signature:

 Loop through the list until reaching a node whose data is 
equal to value, keeping a counter of the current index

 If value is found, return the index
 If value is never found, return -1

public int indexOf(String value)





 Generics



 Finish Project 3
 Due Friday by midnight!

 Read Chapter 18
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