
Week 11 - Wednesday



 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Networking









 What if you want to hold a lot of int values, or String
values, or Wombat values?

 You make an array!
 But arrays have a fixed size

 What if you don't know how long to make it?
 You have to overestimate how many values you need
 Or you have to periodically resize your array



 Another approach is using a dynamic data structure
 A dynamic data structure grows as you need space
 Python has lists (and sets and dictionaries) built in
 But Java depends on libraries
 Before we do libraries, let's implement a linked list ourselves 

to see what a pain it is
 Making data structures that work efficiently in different 

circumstances is the heart of COMP 2100





 A linked list is one of the simplest kinds of dynamic data 
structures

 You can imagine a linked list as a train
 Each node in the linked list has some cargo, and it can point at 

the next item in the list
 The last item points at null so that you know that the train has 

ended
 You can add and remove nodes as much as you want, and 

nothing needs to be resized



 The most common library implementation of a linked list is a 
doubly linked list

 Node consists of data, a next pointer, and a previous pointer
 Because we know the next and the previous, we can move 

forwards or backwards in the list
Xhead

23 47 58

X tail



 Let's try a simple definition for a doubly linked list that holds an unlimited 
number of String values:
public class LinkedList {

private static class Node {
public String data;
public Node next;
public Node previous;

}

private Node head = null
private Node tail = null;
private int size = 0;
…

}



 Inside the LinkedList class, we have to write methods to 
manipulate it

 There will be simple accessor methods like size() that 
return the size

 There will be simple mutator methods like clear() that 
remove all the elements from the list

 But the hard work will be methods to get, add, remove, and 
find elements



 If we always keep the size member correctly updated, the size()
accessor has a straightforward implementation

 Likewise, clearing the list returns it to its state right after construction

public int size() {
return size;

}

public void clear() {
head = null;
tail = null;
size = 0;

}



 Method signature:

 The method creates a new node
 If the list is empty, it points head at the new node
 Otherwise, it points the tail node's next at the new node 

and the new node's previous at the tail node
 It updates the tail to point at the new node
 It increases size by one

public void add(String value)



 Method signature:

 If index is illegal, throw an 
IndexOutOfBoundsException

 Loop through the list until reaching the node at location 
index (using 0-based indexing, because we are computer 
scientists!)

 Return the data of the node in question

public String get(int index)



 Method signature:

 If the list is empty, throw a NoSuchElementException
 Point a temporary variable at the head node
 Point head at the next node
 If the next node is null, point tail at null
 Otherwise, point the next node's previous at null
 Return the data of the temporary node

public String remove()



 Method signature:

 Loop through the list until reaching a node whose data is 
equal to value, keeping a counter of the current index

 If value is found, return the index
 If value is never found, return -1

public int indexOf(String value)





 Generics



 Finish Project 3
 Due Friday by midnight!

 Read Chapter 18


	COMP 2000
	Last time
	Questions?
	Project 3
	Dynamic Data Structures
	Storing a bunch of stuff
	Dynamic data structures
	Linked Lists
	Linked list
	Doubly linked list
	Definition
	Linked list methods
	Easy methods
	Add to the end of the list
	Get an element from the list
	Remove the first element
	Find the index of an element
	Upcoming
	Next time…
	Reminders

